数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引。
reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
1)函数作用:
重置索引或其level。
重置数据帧的索引,并使用默认索引。如果数据帧具有多重索引,则此方法可以删除一个或多个level。
2)参数:
drop: 重新设置索引后是否将原索引作为新的一列并入DataFrame,默认为False
inplace: 是否在原DataFrame上改动,默认为False
level: 如果索引(index)有多个列,仅从索引中删除level指定的列,默认删除所有列
col_level: 如果列名(columns)有多个级别,决定被删除的索引将插入哪个级别,默认插入第一级
col_fill: 如果列名(columns)有多个级别,决定其他级别如何命名
3)返回DataFrame or None。具有新索引的数据帧,如果inplace=True,则无索引。
import pandas as pd
import numpy as np
df = pd.DataFrame([('bird', 389.0),
('bird', 24.0),
('mammal', 80.5),
('mammal', np.nan)],
index=['falcon', 'parrot', 'lion', 'monkey'],
columns=('class', 'max_speed'))
print(df)
print(' ')
df1 = df.reset_index()
print(df1)
print(' ')
df2 = df.reset_index(drop=True)
print(df2)